WWW. MY WAITS CLOUD COM

Math3506, 2012. Model solutions

Qu1

- (a) This is a predator-prey model. There are intraspecific competition terms $-bx^2$, $-fy^2$. ex is the predator per capita growth from consuming prey x and -cy is the per capita reduction in prey x due to consumption by predator y. The carrying capacity for x is a/b and for y is 0.
- (b) Steady states are (0,0), (a/b,0) and any interior steady state solves

$$a - bx - cy = 0$$
, $-d + ex - fy = 0$.

Solving we get

$$(x^*,y^*) = \frac{1}{bf+ce}(fa+cd,ea-bd),$$

so we require ae > bd for an interior steady state to exist.

For stability, we find the stability matrix

$$M = \begin{pmatrix} (a - bx - cy) - bx & -cx \\ ey & (-d + ex - fy) - fy \end{pmatrix}.$$

At (0,0) we have

$$M = \left(\begin{array}{cc} a & 0 \\ 0 & -d \end{array}\right),$$

which has eigenvalues a, -d hence (0,0) is a saddle. At (a/b,0) we have

$$M = \left(\begin{array}{cc} -a & -ac/b \\ 0 & -d + ea/b \end{array} \right),$$

which has eigenvalues which are opposite sign and hence (a/b, 0) is a saddle. At the interior steady state (x^*, y^*) we have

$$M = \left(\begin{array}{cc} -bx^* & -cx^* \\ ey^* & -fy^* \end{array} \right).$$

Thus $\lambda_1 + \lambda_2 = -bx^* - fy^* < 0$ and $\lambda_1\lambda_2 = x^*y^*(bf + ce) > 0$ when the interior steady state exists. Hence both eigenvalues have negative real part and the interior steady state is locally stable when it exists.

- (c) (i) x(0) = 0, y(0) > 0. $x(t) = 0 \ \forall t \ \text{and} \ \dot{y} = y(-d fy) \ \text{so} \ x(t) = 0, \lim_{t \to \infty} y(t) = 0$. Similarly if (ii) y(0) = 0 then $y(t) = 0 \ \forall t, \ \dot{x} = x(a bx)$ and if x(0) > 0 then $x(t) \to a/b$ monotonically, i.e. $\lim_{t \to \infty} x(t) = a/b, y(t) = 0$.
- (d) See fig 1

Figure 1: Qu 1 part . Left ae > bd, right $ae \le bd$.

Qu2

- (a) Steady states are solutions of $N=rN/(1+N^{\alpha})$, so we have N=0 and $N=(r-1)^{1/\alpha}$ which exists if r>1. Stability is determined by the eigenvalues $\lambda=f'(N^*)$ where N^* is the steady state. But $f'(N)=\frac{r(K-(\alpha-1)N^{\alpha})}{(K+N^{\alpha})^2}$. Hence $\lambda=f'(0)=r$ so the origin is stable if r<1. We need r>1 for the non-zero steady state to exist. $f'((r-1)^{1/\alpha})=\frac{1-(\alpha-1)(r-1)}{r}$. Then $(r-1)^{1/\alpha}$ is stable for $1< r<\frac{\alpha}{\alpha-2}$.
- (b) See fig 2
- (c) Solve $f^2(N) = N$:

$$\frac{r\frac{rN}{1+N^{\alpha}}}{1+\left(\frac{rN}{1+N^{\alpha}}\right)^{\alpha}}=N$$

Remove case N=0 and set $x=1+N^{\alpha}$ to obtain

$$x^{\alpha} - r^2 x^{\alpha - 1} + r^{\alpha} x - r^{\alpha} = 0.$$

x=r is one root corresponding to the steady state $N=(r-1)^{\alpha}$. Since $\alpha \leq 3$ there can be at most two other real roots x_1, x_2 and they must exceed one for the corresponding N_1, N_2 to be positive.

www.my.mainscloud.com

Figure 2: Qu2 part . Left 0 < r < 1 and right 1 < r.

(d) For $\alpha < 3$, a 2-cycle is not possible by the previous part. if $\alpha = 3$ then we have $x^3 - r^2x^2 + r^3x - r^3 = (x - r)(x^2 - (r^2 - r)x + r^2)$. Hence we need $(r^2 - r)^2 > 4r^2$ for real x which translates to r > 3. Moreover $(r^2 - r)x = x^2 + r^2 > r^2$ so each x > 1.

Qu3

(a) Both intra and interspecific competition.

(b)
$$\begin{pmatrix} e & b \\ d & f \end{pmatrix} (x,y)^T = (a,c)^T$$
 so $(x,y)^T = \frac{1}{ef-bd} \begin{pmatrix} f & -b \\ -d & e \end{pmatrix} (a,c)^T = \begin{pmatrix} \frac{fa-bc}{ef-bd}, \frac{ec-ad}{ef-bd} \end{pmatrix}$ so we need $f/b > c/a > d/e$ or $f/b < c/a < d/e$.

(c)

$$\dot{V} \equiv d(\dot{x} - x^* \frac{\dot{x}}{x}) + b(\dot{y} - y^* \frac{\dot{y}}{y})
= d\frac{\dot{x}}{x}(x - x^*) + b\frac{\dot{y}}{y}(y - y^*)
= d(a - ex - by)(x - x^*) + b(c - dx - fy)(y - y^*)
= -d(e(x - x^*) + b(y - y^*))(x - x^*) - b(d(x - x^*) + f(y - y^*))(y - y^*)
= -deX^2 - 2bdXY - bfY^2$$

where $X = x - x^*, Y = y - y^*$. Now $(2bd)^2 - 4(de)(bf) = 4bd(bd - ef) < 0$ so that $-deX^2 - 2bdXY - bfY^2$ has no real roots and hence is negative unless X = Y = 0. By the Lyapunov theorem, $(x(t), y(t)) \rightarrow (x^*, y^*)$ for all (x(0), y(0)) in the interior of the first quadrant.

Figure 3: Qu3 part

Qu4

(a)

$$L = \left(\begin{array}{cccccc} 0 & 0 & 0 & \cdots & 0 & p_0 b \\ p_1 & 0 & 0 & \cdots & 0 & 0 \\ 0 & p_2 & 0 & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \cdots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & p_{n-1} & 0 \end{array}\right).$$

- (b) Characteristic polynomial reads $c(\lambda)=(-1)^n\lambda^n+(-1)^{n-1}p_0p_1\cdots p_{n-1}b$, so that the eigenvalues are $\lambda_k=re^{2k\pi i/n}$ for $k=0,1,\ldots,n-1$ where $r=(p_0p_1\cdots p_{n-1}b)^{1/n}$.
- (c) Since the eigenvalues are distinct, we have a linearly dependent set of eigenvectors v_0,\ldots,v_{n-1} and any initial population has an expansion $N(0)=\Re\{\sum_{k=0}^{n-1}\alpha_kv_k\}$. Thus

$$L^t N(0) = \Re\{\sum_{k=0}^{n-1} \lambda_k^t \alpha_k v_k\} = \Re\{\sum_{k=0}^{n-1} r^t e^{2k\pi t i/n} \alpha_k v_k\}.$$

When we look at the age distribution the r^t cancels and we are left with X as the ratio of two periodic functions of period n, i.e. a periodic function of period n.

(d) The population will die out if r < 1.

WWW. THE THE COUNTY COM

Qu₅

- (a) $\rho(t)$ is the time-dependent intrinsic growth rate of the population, and K(t) is the time-dependent carrying capacity.
- (b) Write $M(t) = N(t) \exp(-\int_0^t \rho(s) ds)$. Then $M_0 = M(0) = N(0) = N_0$, and

$$\begin{split} \frac{dM}{dt} &= \left[\frac{dN}{dt} - \rho(t)N(t)\right] \exp(-\int_0^t \rho(s) \, ds) \\ &= \left[\rho(t)N\left(1 - \frac{N}{K(t)}\right) - \rho(t)N(t)\right] \exp(-\int_0^t \rho(s) \, ds) \\ &= -H(t)M(t)^2 \text{ where } H(t) = \frac{\rho(t)}{K(t)} \exp\left(\int_0^t \rho(s) \, ds\right). \end{split}$$

Thus $dM/M^2 = -H(t)dt$ and integrating yields

$$M(t) = \frac{1}{\left\{\frac{1}{M_0} + \int_0^t H(u) \, du\right\}} = \frac{M_0}{1 + M_0 \int_0^t H(u) \, du}.$$

Finally, in terms of N we have

$$N(t) = \frac{N_0 \exp\left(\int_0^t \rho(s) ds\right)}{1 + N_0 \int_0^t H(u) du},$$

$$H(u) = \frac{\rho(u)}{K(u)} \exp\left(\int_0^u \rho(s) ds\right).$$

(c) When $\rho(t) = r + \alpha \cos(2\pi t/T)$, we have

$$\int_0^u \rho(s) ds = ru + \frac{T\alpha}{2\pi} \sin(2\pi u/T).$$

Hence

$$H(u) = \frac{1}{\kappa} \frac{d}{du} \exp\left(ru + \frac{T\alpha}{2\pi} \sin(2\pi u/T)\right).$$

and

$$\int_0^t H(u) \, du = \frac{1}{\kappa} \left(\exp \left(rt + \frac{T\alpha}{2\pi} \sin(2\pi t/T) \right) - 1 \right).$$

This gives

$$N(t) = \frac{N_0 \exp\left(rt + \frac{T\alpha}{2\pi}\sin(2\pi t/T)\right)}{1 + N_0 \frac{1}{\pi}\left(\exp\left(rt + \frac{T\alpha}{2\pi}\sin(2\pi t/T)\right) - 1\right)}.$$

(d) If r < 0 then $N(t) \to 0$. If r > 0 then $N(t) \to \kappa$. If r = 0 then N(t) is periodic, period T.